Anode material for LIB

CARBOTRON ®

Kureha, Changing the Future of Batteries

Kureha Battery Materials Japan Co., Ltd.
Anode materials selection for LIB

- Basically three candidates for Anode materials
 * Graphite
 * Non-graphitizable carbon - “CARBOTRON ®”
 * Lithium Titanium Oxide (LTO)

- Criteria for selecting Anode materials
 * Energy density, Initial efficiency
 * Charge-Discharge performance
 * Cycle performance (Durability)
 * Cryogenic performance
 * Cost
 * Supply-ability
Structural variation of Carbon materials

- Simple → Cross-linked Structure → Complicate

200 ~ 500°C

- Low
- Order Selective Orientation Disorder

Organic Materials

- Graphitizable Carbon “CARBOTRON ®”
- Non-graphitizable Carbon

~ 3000 ~ °C

- High
- Graphite
- Selective Orientation Disorder

Low Temp. Treated Carbon

Graphitization

- Graphite
- Graphitizable Carbon

Low Heat Treatment Temperature

Carbonization

- Non-Graphitizable Carbon “CARBOTRON ®”

High
Kureha developed Non-graphitizable carbon “CARBOTRON ® ” for the world-first commercial base LIB released by SONY in 1991. Kureha has been the only manufacturer selling Non-graphitizable carbon on a commercial basis in the world. Kureha has in-depth technology in controlling and designing carbon structure, and is bringing it to automobile applications.

Graphite

CARBOTRON®
Difference of “CARBOTRON ®” , Graphite and LTO

CARBOTRON ®
- Li-ion storage in disordered microscopic pore by forming cluster.
 - No swelling of layer → High durability
 - Three dimensional Li-ion access → Good charge/discharge performance

Graphite
- Li-ion storage in graphite interlayer (0.335nm).
 - Theoretical energy density – 372Ah/kg
 - Interlayer expansion by Li-ion intercalation (0.371nm) → Concern on durability
 - Li-ion access only from the edge of the layer → Less charge/discharge performance

LTO
- Li-ion storage in LTO structure. (Spinel ↔ Rock salt)
 - Stable crystal structure on charge/discharge. → High durability
 - Low operating voltage (2.5V) → Low volume energy density
Difference of CARBOTRON®, Graphite and LTO

<table>
<thead>
<tr>
<th></th>
<th>Volume Energy Density</th>
<th>Weight Energy Density</th>
<th>Voltage</th>
<th>Discharge Performance</th>
<th>Charge Performance</th>
<th>Cycle Performance</th>
<th>Lithium Dendrite Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBOTRON®</td>
<td>Good ~ Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Graphite</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>LTO</td>
<td>Good</td>
<td>Fair</td>
<td>Good</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

CARBOTRON® gives excellent performances which Graphite or LTO does.
Kureha developed, through its ability to design the structure, CARBOTRON® utilizing plant based new materials.

We will start to provide samples to our customers in mid 2012, and scheduled to start commercial production in 2013 through a JV with Kureray, who is a manufacturer of activated carbon.

By this development, we can achieve

1. Lower production cost.
2. Diversify our product portfolio.
3. Stabilize our supply by securing raw materials.
LIB in future

LIB is required to have different qualities depending on its application. Kureha believes LIB suitable for high performing HEVs will be one of the main-stream product in the future.

1. Importance of safety and durability in cell level.

2. Achieve longer distance drive through the utilization of regenerative energy. (Charge performance)

3. Importance of better acceleration for automobiles. (Discharge performance)

CARBOTRON ® has superb properties for Durability and Charge/Discharge performance.